Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 1925-1941, 2019.
Article in Chinese | WPRIM | ID: wpr-771742

ABSTRACT

Harnessing industrial microorganisms to utilize renewable feedstocks and meanwhile produce biofuels, bulk chemicals, food ingredients, nutraceuticals, pharmaceuticals, industrial enzymes, etc. is the basis for successful biological industries. Robust traits of industrial microorganisms including high yield and productivity as well as stress tolerance are controlled by sophisticated genetic regulatory networks. Engineering robustness of industrial microorganisms requires systematic and global perturbations at the genome-wide scale to accelerate the accumulation of diversified genotypic mutations, thus generating desirable phenotypes. We review heve the mechanisms of genetic regulation and stress response in robust industrial organisms, the global perturbations and multiplex accelerated evolution at the genome-wide scale, as well as the global perturbation of cellular redox balance. In the future, based on system biology and synthetic biology, more efforts should be further devoted to understanding the mechanisms behind robust traits in industrial microorganisms under industrial niches for modeling and prediction as well as systematic engineering.


Subject(s)
Environment , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Genetics , Industrial Microbiology , Metabolic Engineering , Synthetic Biology
SELECTION OF CITATIONS
SEARCH DETAIL